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Abstract
The kinetic theory of photons interacting with gravitational waves is developed.
Non-thermal photon distributions are considered. The possibility of photon
Landau damping and photon beam instabilities of gravitational waves, both in
the kinetic and fluid regimes, is discussed.

PACS number: 04.30.Nk

1. Introduction

The interaction of photons with the gravitational field is one of the major problems in the
theory of gravitation. The effects known as the gravitational redshift and the gravitational
lens are of considerable importance not only historically, but also in present day theoretical
research and astronomical observations.

In a recent study [1], it was shown that such gravitational effects can be described
as particular examples of photon acceleration, a concept successfully developed in plasma
physics and in optics [2]. Furthermore, photon blueshift was also predicted as a result of
photon interaction with a gravitational wavepacket, propagating in a plasma or in the absence
of matter. These results indicate the existence of a transfer of energy between the photon field
(more precisely the electromagnetic field) and the gravitational field.

In the present paper, a statistical theory of the photon interaction with a gravitational
wave is developed. Starting from the photon kinetic equation in a gravitational field, the
dispersion relation of a gravitational wave is derived, showing that photon Landau damping
can be possible. This result extends the concept of photon Landau damping of plasma waves
[3] to the case of propagation of metric waves in vacuum.

The possible occurrence of Landau damping of gravitational waves in the presence of
a photon gas is not new in the literature [4–6]; but here we give a different perspective.
Furthermore, the possibility of exciting gravitational waves by a photon beam is examined in
two different regimes: the kinetic regime associated with photon beams with a large spectrum,
corresponds to a negative Landau damping (or a positive Landau growth) and the fluid regime,
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associated with nearly mono-energetic photon beams, is also examined in detail. The resulting
growth rates are much more favourable than those of the kinetic regime and give some hope
of obtaining observable gravitational wave instabilities in astrophysical environments, or even
in future ultra-intense laser installations.

2. Photon kinetic equation

Let us consider the photon kinetic equation in a curved spacetime. For particles with
momentum pi and coordinates xi, with i = 0, 1, 2, 3, we can define a number density in
the eight-dimensional phase space, N

(
xi, pi

)
.

In the absence of collisions between these particles, the kinetic equation can be stated as
the conservation of the number density along the geodesics. Using the affine parameter λ to
characterize the geodesic lines, we can write this conservation law as [7]

d

dλ
N

(
xi(λ), pi (λ)

) = 0. (1)

If the particle motion is Hamiltonian, we can write

d

dλ
= ∂

∂λ
+ [H, ] (2)

where H is the Hamiltonian function describing the single particle trajectories. Noting that
N

(
xi, pi

)
is not explicitly dependent on λ, we get

[
H,N

(
xi, pi

)] =
(
∂H

∂pi

∂

∂xi
− ∂H

∂xi

∂

∂pi

)
N

(
xi, pi

) = 0. (3)

Now, if the particles are photons, we can identify H with the photon frequency, or more
precisely, with the time-like component of the four-wavevector ki, such that pi = h̄ki . In the
following, we assume h̄ = 1. Then we write

H = −k0
(
x0, xα, kα

)
(4)

with α = 1, 2, 3. Then we get(
∂

∂x0
+
∂k0

∂kα

∂

∂xα
− ∂k0

∂xi

∂

∂ki

)
N

(
xi, ki

) = 0. (5)

It is also known that the photon dispersion relation is

kik
i = gij kikj = 0 (6)

where gij are the components of the metric tensor. In general, these quantities depend on xi,
which means that we can establish a relation of the form:

ω = ω (xα, kα, t) . (7)

Here we have used the frequency ω = −k0c, and the time variable t = x0/c. This
expression represents the dispersion relation of the photons in vacuum and provides the
Hamiltonian function (4). The explicit form of this expression is discussed below.

From the existence of such a dispersion relation we can also conclude that

N
(
xi, ki

) = N (ω, t; xα, kα) = 2πN (xα, kα, t) δ (ω − ω (xα, kα, t)) . (8)

After integration over ω, we obtain from equation (5)(
∂

∂t
+
∂ω

∂kα

∂

∂xα
− ∂ω

∂xα

∂

∂kα

)
N (xα, kα, t) = 0. (9)
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This is the final expression for the photon kinetic equation in a curved spacetime. The limiting
case of a flat spacetime and its relation with the Wigner–Moyal equation for the electromagnetic
field is discussed elsewhere [8]. The characteristic curves of this partial differential equation
are

dxα

∂t
= ∂ω

∂kα

dkα
∂t

= − ∂ω
∂xα

. (10)

These are nothing but the single photon equations of motion, written in canonical form.

3. Photon dispersion relation

Let us write equation (6) in a more explicit form. Using ω = −k0c, and noting the existence
of a symmetry in the components of the metric tensor (g0α = gα0), we have

g00ω2 − 2g0αωkαc + gαβkαkβc2 = 0. (11)

Solving for the frequency ω, we obtain

ω

c
= y0αkα +

√(
y0αkα

)2 − yαβkαkβ (12)

with y0α = g0α/g00 and yαβ = gαβ/g00.
Let us first assume a flat spacetime. Using the Minkowski metric tensor, we have

gij = ηij = 1, for i = j = 0, and = −δij for i, j = 1, 2, 3, where δij is the Kroenecker delta
symbol. The dispersion relation (12) is then reduced to ω = kc, where k = √

δαβkαkβ .
If the flat spacetime is perturbed by a gravitational wave, we can use

gij = ηij + hij (13)

where |hij | � 1. In this case, we have

y0α � h0α yαβ � −δαβ + (h00δαβ + hαβ). (14)

Replacing in equation (12), we obtain

ω

c
= h0αkα + k

√
1 +

(
h0αkα/k

)2 − (h00δαβ + hαβ)
(
kαkβ/k2

)
. (15)

To the lowest order in the metric perturbation hij , this can be written as

ω � kc[1 + f (hij )] (16)

with

f (hij ) = −1

2
h00 +

kα

k
h0α − kαkβ

2k2
hαβ . (17)

This is the dispersion relation for a photon with frequencyω, moving in a perturbed empty
spacetime. Alternatively, we could also write this dispersion relation as

ω = ω0 −�ijhij (18)

where ω0 = kc and

�ij = 1

2
δi0δi0 − δi0δαj

kα

k
+ δαi δ

β

j

kαkβ

2k2
. (19)

Similar expressions for the photon frequency as seen by a moving massive particle in the
presence of a gravitational wave were derived by Grishchuk [9].
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4. Linearized kinetic equation

Let us assume that the metric perturbation hij is associated with a perturbation in the photon
number density Ñ , such that

N (xα, kα, t) = N0 (x
α, kα, t) + Ñ (xα, kα, t) . (20)

The spacetime evolution of such quantity is described by the kinetic equation (9).
Linearizing this equation with respect to the perturbation, we obtain

L0Ñ + L′N0 = 0 (21)

with the differential operators L0 and L′ defined by:

L0 = ∂

∂t
+
∂ω0

∂kα

∂

∂xα
− ∂ω0

∂xα

∂

∂kα
(22)

and

L′ = −hij ∂�
ij

∂kα

∂

∂xα
+�ij

∂hij

∂xα

∂

∂kα
. (23)

Here, it should be noted that according to equations (10), the components of the
(unperturbed) photon velocity are determined by

vα = dxα

dt
= ∂ω0

∂kα
(24)

and that in a flat spacetime, we also have
∂ω0

∂xα
= c ∂k

∂xα
= 0. (25)

Let us also assume that the metric tensor and photon number density perturbations, hij

and Ñ , take the elementary form exp i (qαxα −�t). The operator L0, defined above, is then
reduced to

L0 = −i� + iqαvα (26)

and equation (21) becomes

Ñ = i

(�− qαvα)L
′N0. (27)

5. Gravitational wave equation

It is well known that in the weak field approximation the Einstein field equations [10] can be
reduced to

�2 hij = −κSij (28)

where

�2 = ηij ∂
∂xi

∂

∂xj
= 1

c2

∂2

∂t2
− δαβ ∂2

∂xα∂xβ
. (29)

We have introduced κ = 16πG/c2, where G is the gravitational constant, and we also
have

Sij = Tij − 1
2ηijT

λ
λ . (30)

For a gas of N particles, the energy–momentum tensor [10] would be given by

T ij (x, t) =
N∑
n

pinp
j
n

En
δ(3)(x − vnt) (31)

where pn, En and vn are the momentum, energy and velocity of the particles, respectively.
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In the case of a gas of photon, described by the photon number density N(xα, kα, t), we
use p = h̄k, E = h̄ω, and replace the sum by an integral over the photon population

T ij (xα, t) = h̄
∫

kikj

ω (xα, kα, t)
N (xα, kα, t) dk(3) (32)

where dk(3) = dk1dk2dk3/(2π)3.
From equation (20),we have a steady-state T̄ ij associated with the equilibrium distribution

N0 and a perturbed value of the energy–momentum tensor T̃ ij associated with the perturbation
Ñ . However, the steady-state does not contribute to the radiation field, which means that the
equation is reduced to

�2 hij = −κS̃ij . (33)

For a perturbation of the form exp i (qαxα −�t), we get

(�2 − q2c2)hij = κc2S̃ij . (34)

Here we note that T λλ is proportional to kλkλ and, according to equation (6), we conclude
that T λλ = 0. Using equations (30) and (32), we have, after linearization

T̃ij = h̄
∫
kikj

kc
Ñ (xα, kα, t) dk(3). (35)

Equation (34) then becomes

(�2 − q2c2)hij = a
∫
kikj

k
Ñ dk(3) (36)

with the constant a = κh̄c, and using equation (20)

(�2 − q2c2)hij = ia
∫
kikj

k

L′N0

(�− qαvα) dk(3). (37)

For a homogeneous steady-state photon distribution n0, we see from equation (23) that
we simply have

L′N0 = iqα�µνhµν
∂N0

∂kα
. (38)

At this point, it is also useful to write

hij = eijh (39)

where h is the gravitational wave amplitude and eij is the unit polarization tensor, such that

eije∗
ij = 1. (40)

Replacing equations (39)–(40) in equation (37), we finally obtain

�2 − q2c2 = −a
∫ (

eij∗kikj
)

k

(
eµν�µν

) qα∂N0/∂kα

(�− qαvα) dk(3). (41)

This is the dispersion relation for gravitational waves with a frequency �, propagating in a
photon gas.
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6. Photon Landau damping

Let us rewrite the above dispersion relation as

�2 − q2c2 = −aI (42)

with the integral I defined as

I =
∫
g(kα)

qα∂N0/∂kα

(�− qαvα) dk(3) (43)

and

g(kα) =
(
eij∗kikj

)
k

(
eµν�µν

)
. (44)

Without loss of generality, we can assume that the gravitational wave propagates along
the direction x1. This means that

qα = (q, 0, 0) (45)

and

qαv
α = (c/k)qk1. (46)

We also note that k1 = k1. Defining k⊥ = (k2, k3), we can then write

I =
∫
g(k1, k⊥)

q∂N0/∂k1

(�− qc/k)k1

dk1dk⊥
(2π)3

(47)

or, equivalently,

I = −
∫

dk⊥
(2π)2

∫
dk1

2π
g(k1, k⊥)

q∂N0/∂k1

(u−�/q) (48)

with

u = c

k
k1 = ck1

(
k2

1 + k2
⊥
)−1/2

. (49)

This expression for the integral shows that there is a resonant value for the photon velocity uR,
such that

uR(k1, k⊥) = �/q. (50)

Developing equation (49) around this resonant value, we can write

u(k1, k⊥) � ur + (k1 − kR)
(
∂u

∂k1

)
k1=kR

(51)

where kR is the value of k1 that satisfies, for a generic k⊥, the resonant condition (50). We can
replace this in equation (48) and write the approximate expression

I � −
∫

dk⊥/(2π)2

(∂u/∂k1)R

∫
dk1

2π
g(k1, k⊥)

∂N0/∂k1

k1 − kR . (52)

We recognize, in the last integral, the well-known form∫
h(z)

z− z0
dz = P

∫
h(z)

z − z0
dz + iπh(z0) (53)

where the first term on the right-hand side denotes the principal part of the integral. This
means that we have

I = −(I1 + iI2) (54)
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with

I1 =
∫

dk⊥/(2π)2

(∂u/∂k1)R
P

∫
dk1

2π
g(k1, k⊥)

∂N0/∂k1

k1 − kR (55)

and

I2 = 1

8π2

∫
g(kR, k⊥)
(∂u/∂k1)R

(
∂N0

∂k1

)
R

dk⊥. (56)

The dispersion relation becomes �2 − q2c2 = a(I1 + iI2). Defining � = �r + iγ , we
obtain the modified dispersion relation that determines the real part of the frequency�r , for a
given q

�2
r − q2c2 = aI1 (57)

and from the imaginary part, we obtain the damping rate

γ = aI2

2�r
� aI2

2qc
(58)

where we have assumed that aI1 � q2c2. We conclude that the existence of a photon
background introduces a damping rate on the gravitational wave that is proportional to the
derivative of the photon density number, calculated at the resonant value of k1:

γ ∝ G
(
∂N0

∂k1

)
R

. (59)

For a thermal population of photons this derivative is always negative, which means that
we will have a wave damping induced by the resonant photon population. This is nothing but
the photon Landau damping of the gravitational wave.

Note that the quantity aI1 is extremely small and leads to a negligible deviation of the phase
velocity of the gravitational wave with respect to its vacuum value c. It has been argued [5]
that the quantity I1 is always positive for a thermal distributionN0. According to equation (57)
this would mean that the phase velocity of the gravitational wave is always superluminal in a
background homogeneous and stationary gas, vφ = �r/q � c. As a result, no such thing as a
resonant interaction of this wave with the photon gas would be possible.

However, a gravitating homogeneous gas can never be stationary. Let us assume that apart
from the photon gas, there is also in addition a small amount of dust, which is gravitational
contracting. In that case, it can easily be shown that we have vφ < c [6]. Such a correction
leads to the replacement of equation (57) by

�2
r − q2c2 = aI1 − 4

3κρ (60)

where ρ is the density of the low-density dust gas, and where the dust pressure is assumed as
negligible.

A similar result of the subluminal phase velocities could also be obtained if, instead of
dust, we had considered the internal structures of the molecules of a low-density background
gas [6]. This means that in a large variety of situations compatible with astrophysical models,
we can assume that vφ < c, in which case the resonant interactions with the photons will lead
to photon Landau damping as described above.

7. Photon beam instability

We know that the two possible polarization states for a gravitational wave propagating along
x1 are

e23 = 1 e22 = −e33 = 1√
2

(61)
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Let us concentrate on the second polarization state. We have

eij∗kikj = 1

2
k2

2 eµν�µν = 1√
2

�22 = k2
2

2k2
. (62)

We then get g(k1, k2) = (
k2

2

/
4k3

)
. Let us assume an intense photon beam with finite

width, as described by

N0(k1, k2) = N0 exp

{
− 1

2σ 2

(
k2

k1

)2
}
. (63)

This is similar to the distribution associated with a laser pulse near the focal region, where
σ = 1θ would be the focal angle. Using (∂u/∂k1)R = k2

2c
/
k3, we calculate the integral I2,

defined by equation (56). The result is

I2 � 1

5π2

c

k
N0σ

5. (64)

The growth rate of the kinetic beam instability induced by the photon beam is then given
by

γ = a

10π2

N0c
2

ω�
σ 5. (65)

Here, a ∝ G and σ are very small quantities, and N0 and ω can be very large ones.
We should also note that, in order to obtain a resonant condition k1 = kR , we must have
a non-negligible dispersive contribution to the gravitational wave, in order to allow for the
gravitational wave phase velocity to be less than c. This means that in order to have a clear
answer on the possibility of resonance in a specific environment, which could be, for instance,
a laboratory with ultra-intense beams, or a dusty plasma near an astrophysical object, a careful
numerical investigation will be needed.

8. Cold photon beam

We return to the kinetic dispersion relation (41), and assume that the photon beam propagates
along a well-defined direction x1 without significant angular spreading. This means that we
can write

N0(k1, k2, k3) = (2π)2N0(k1)δ(k2)δ(k3). (66)

Integrating with respect to k2 and k3, we get

�2 − q2c2 = −a
∫
g(k1)

q1∂N0/∂k1

(�− q1v(k1))

dk1

2π
. (67)

Here, we note that the photon velocity in vacuum is constant (v(k1) = c), which allows
us to write, after an integration by parts,

�2 − q2c2 = aq1

�− q1c

∫
g′(k1)N(k1)

dk1

2π
. (68)

The unstable gravitational waves will propagate at an angle θ with respect to the photon
beam, meaning that q1 = q cos θ . Now we assume that the photon beam is not only
unidirectional but also mono-energetic. In other words, we assume a cold beam of the
form

N0(k1) = 2πN0δ(k1 − k). (69)
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We also note that g′(k) = −sin2 θ/k2. Equation (68) is then reduced to

1 − q2c2

�2
+

ak(θ)qc

�2(�− qc cos θ)
= 0 (70)

with

ak(θ) = a

ck2
N0 cos θ sin2 θ. (71)

In order to find the instability criteria, let us consider

� = qc cos θ + η (72)

with η � � and cos θ not too small. Replacing this in equation (70) we obtain

η[2ηqc− q2c2(1 − cos2 θ)] + ak(θ)qc = 0. (73)

Assuming θ � 1, we obtain the following solution:

η = 1
2qcθ

2 + 1
2

√
q2c2θ4 − 2ak(θ). (74)

Noting that ak(θ) ∝ θ2, we see that for small angles we can have

θ4 � 2ak(θ)

q2c2
. (75)

This gives the instability criterion. According to equation (71), this can also be written as

0 < θ �
(

2aN0

k2q2c3

)1/2

. (76)

The growth rate is then approximately written as

η = i
√

2ak(θ) ∝ iθ
√
G. (77)

This result shows that for a cold photon beam, the growth rate of the gravitational waves
propagating at angle θ with respect to the beam is proportional to

√
G. This is much larger than

the kinetic growth rate associated with the inverse Landau damping, which is proportional to G.
We also conclude that for a purely one-dimensional configuration where θ = 0, the instability
can never occur: the larger growth rates correspond to a small (but not exactly zero) angle θ .
This angular constraint is due to the transverse character of gravitational wave polarization.

9. Conclusions

In this paper we have examined the possibility of the occurrence of instabilities of gravitational
waves due to the presence of photon beams. This was done by using the methods of photon
kinetic theory, where the electromagnetic radiation is treated as a fluid and its spacetime
evolution is described by a kinetic equation. We have considered linear gravitational waves
propagating in a (nearly) vacuum background and in the presence of the photon gas.

We have shown that under appropriate conditions, Landau damping of gravitational waves
due to the photon gas can eventually take place, in agreement with previous study [6]. Our
formulation is, however, more general in the sense that we assume a generic photon distribution
and not just a thermal radiation spectrum. This leads us to formulate new questions concerning
the possible kinetic instability produced by gaussian photon beams, which can be seen as an
inverse Landau damping. Finally, the case of a cold and mono-energetic photon beam is also
considered. It is shown that the resulting instability growth rate is much higher than that of
the kinetic instability.

It should also be mentioned that such instabilities are not likely to occur in the context of
laser-beam gravitational wave detectors, because the associated laser beam energy densities are
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quite low and the instability growth rates discussed above will always be negligible. However,
with future ultra-intense laser systems working well above the Peta–Watt power level, the
observation of such instabilities will eventually become possible.

In this paper, the dispersion effects of gravitational waves, in particular those leading to
a subluminal phase velocity, were not discussed in a self-consistent way, because this would
be too cumbersome. A detailed discussion of the dispersion effects that can occur in a plasma
will be given in a future work.
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